Independent modes of ganglion cell translocation ensure correct lamination of the zebrafish retina
نویسندگان
چکیده
The arrangement of neurons into distinct layers is critical for neuronal connectivity and function. During development, most neurons move from their birthplace to the appropriate layer, where they polarize. However, kinetics and modes of many neuronal translocation events still await exploration. In this study, we investigate retinal ganglion cell (RGC) translocation across the embryonic zebrafish retina. After completing their translocation, RGCs establish the most basal retinal layer where they form the optic nerve. Using in toto light sheet microscopy, we show that somal translocation of RGCs is a fast and directed event. It depends on basal process attachment and stabilized microtubules. Interestingly, interference with somal translocation induces a switch to multipolar migration. This multipolar mode is less efficient but still leads to successful RGC layer formation. When both modes are inhibited though, RGCs fail to translocate and induce lamination defects. This indicates that correct RGC translocation is crucial for subsequent retinal lamination.
منابع مشابه
Sonic hedgehog, secreted by amacrine cells, acts as a short-range signal to direct differentiation and lamination in the zebrafish retina.
Neurogenesis in the zebrafish retina occurs in several waves of differentiation. The first neurogenic wave generates ganglion cells and depends on hedgehog (hh) signaling activity. Using transgenic zebrafish embryos that express GFP under the control of the sonic hedgehog (shh) promoter, we imaged the differentiation wave in the retina and show that, in addition to the wave in the ganglion cell...
متن کاملNeuronal Migration and Lamination in the Vertebrate Retina
In the retina, like in most other brain regions, developing neurons are arranged into distinct layers giving the mature tissue its stratified appearance. This process needs to be highly controlled and orchestrated, as neuronal layering defects lead to impaired retinal function. To achieve successful neuronal layering and lamination in the retina and beyond, three main developmental steps need t...
متن کاملHistopathological evaluation of zebrafish (Danio rerio) larvae following embryonic exposure to MgO nanoparticles
The aim of this study was to investigate the histopathological changes in zebrafish larvae following embryonic exposure to nanoparticles of magnesium oxide (MgONPs). The toxicity of metal oxide nanoparticles is attracting increasing attention. Among these nanomaterials, MgONPs are particularly interesting as a low cost and environmentally-friendly material. Histological investigations are used ...
متن کاملThe Expression of irx7 in the Inner Nuclear Layer of Zebrafish Retina Is Essential for a Proper Retinal Development and Lamination
Irx7, a member in the zebrafish iroquois transcription factor (TF) family, has been shown to control brain patterning. During retinal development, irx7's expression was found to appear exclusively in the inner nuclear layer (INL) as soon as the prospective INL cells withdraw from the cell cycle and during retinal lamination. In Irx7-deficient retinas, the formation of a proper retinal laminatio...
متن کاملHistopathological evaluation of zebrafish (Danio rerio) larvae following embryonic exposure to MgO nanoparticles
The aim of this study was to investigate the histopathological changes in zebrafish larvae following embryonic exposure to nanoparticles of magnesium oxide (MgONPs). The toxicity of metal oxide nanoparticles is attracting increasing attention. Among these nanomaterials, MgONPs are particularly interesting as a low cost and environmentally-friendly material. Histological investigations are used ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 215 شماره
صفحات -
تاریخ انتشار 2016